1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/// Try a list of parsers and return the result of the first successful one
///
/// ```rust,ignore
/// alt!(I -> IResult<I,O> | I -> IResult<I,O> | ... | I -> IResult<I,O> ) => I -> IResult<I, O>
/// ```
/// All the parsers must have the same return type.
///
/// If one of the parsers returns `Incomplete`, `alt!` will return `Incomplete`, to retry
/// once you get more input. Note that it is better for performance to know the
/// minimum size of data you need before you get into `alt!`.
///
/// The `alt!` combinator is used in the following way:
///
/// ```rust,ignore
/// alt!(parser_1 | parser_2 | ... | parser_n)
/// ```
///
/// # Basic example
///
/// ```
/// # #[macro_use] extern crate nom;
/// # fn main() {
///  // Create a parser that will match either "dragon" or "beast"
///  named!( dragon_or_beast, alt!( tag!( "dragon" ) | tag!( "beast" ) ) );
///
///  // Given the input "dragon slayer", the parser will match "dragon"
///  // and the rest will be " slayer"
///  let (rest, result) = dragon_or_beast(b"dragon slayer").unwrap();
///  assert_eq!(result, b"dragon");
///  assert_eq!(rest, b" slayer");
///
///  // Given the input "beast of Gevaudan", the parser will match "beast"
///  // and the rest will be " of Gevaudan"
///  let (rest, result) = dragon_or_beast(&b"beast of Gevaudan"[..]).unwrap();
///  assert_eq!(result, b"beast");
///  assert_eq!(rest, b" of Gevaudan");
///  # }
/// ```
///
/// # Manipulate results
///
/// There exists another syntax for `alt!` that gives you the ability to
/// manipulate the result from each parser:
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::IResult::Done;
/// # fn main() {
/// #
/// // We create an enum to represent our creatures
/// #[derive(Debug,PartialEq,Eq)]
/// enum Creature {
///     Dragon,
///     Beast,
///     Unknown(usize)
/// }
///
/// // Let's make a helper function that returns true when not a space
/// // we are required to do this because the `take_while!` macro is limited
/// // to idents, so we can't negate `ìs_space` at the call site
/// fn is_not_space(c: u8) -> bool { ! nom::is_space(c) }
///
/// // Our parser will return the `Dragon` variant when matching "dragon",
/// // the `Beast` variant when matching "beast" and otherwise it will consume
/// // the input until a space is found and return an `Unknown` creature with
/// // the size of it's name.
/// named!(creature<Creature>, alt!(
///     tag!("dragon")            => { |_| Creature::Dragon } |
///     tag!("beast")             => { |_| Creature::Beast }  |
///     take_while!(is_not_space) => { |r: &[u8]| Creature::Unknown(r.len()) }
///     // the closure takes the result as argument if the parser is successful
/// ));
///
/// // Given the input "dragon slayer" the parser will return `Creature::Dragon`
/// // and the rest will be " slayer"
/// let (rest, result) = creature(b"dragon slayer").unwrap();
/// assert_eq!(result, Creature::Dragon);
/// assert_eq!(rest, b" slayer");
///
/// // Given the input "beast of Gevaudan" the parser will return `Creature::Beast`
/// // and the rest will be " of Gevaudan"
/// let (rest, result) = creature(b"beast of Gevaudan").unwrap();
/// assert_eq!(result, Creature::Beast);
/// assert_eq!(rest, b" of Gevaudan");
///
/// // Given the input "demon hunter" the parser will return `Creature::Unkown(5)`
/// // and the rest will be " hunter"
/// let (rest, result) = creature(b"demon hunter").unwrap();
/// assert_eq!(result, Creature::Unknown(5));
/// assert_eq!(rest, b" hunter");
/// # }
/// ```
///
/// # Behaviour of `alt!`
///
/// **BE CAREFUL** there is a case where the behaviour of `alt!` can be confusing:
///
/// when the alternatives have different lengths, like this case:
///
/// ```ignore
///  named!( test, alt!( tag!( "abcd" ) | tag!( "ef" ) | tag!( "ghi" ) | tag!( "kl" ) ) );
/// ```
///
/// With this parser, if you pass `"abcd"` as input, the first alternative parses it correctly,
/// but if you pass `"efg"`, the first alternative will return `Incomplete`, since it needs an input
/// of 4 bytes. This behaviour of `alt!` is expected: if you get a partial input that isn't matched
/// by the first alternative, but would match if the input was complete, you want `alt!` to indicate
/// that it cannot decide with limited information.
///
/// There are two ways to fix this behaviour. The first one consists in ordering the alternatives
/// by size, like this:
///
/// ```ignore
///  named!( test, alt!( tag!( "ef" ) | tag!( "kl") | tag!( "ghi" ) | tag!( "abcd" ) ) );
/// ```
///
/// With this solution, the largest alternative will be tested last.
///
/// The other solution uses the `complete!` combinator, which transforms an `Incomplete` in an
/// `Error`. If one of the alternatives returns `Incomplete` but is wrapped by `complete!`,
/// `alt!` will try the next alternative. This is useful when you know that
/// you will not get partial input:
///
/// ```ignore
///  named!( test,
///    alt!(
///      complete!( tag!( "abcd" ) ) |
///      complete!( tag!( "ef"   ) ) |
///      complete!( tag!( "ghi"  ) ) |
///      complete!( tag!( "kl"   ) )
///    )
///  );
/// ```
///
/// If you want the `complete!` combinator to be applied to all rules then use the convenience
/// `alt_complete!` macro (see below).
///
/// This behaviour of `alt!` can get especially confusing if multiple alternatives have different
/// sizes but a common prefix, like this:
///
/// ```ignore
///  named!( test, alt!( tag!( "abcd" ) | tag!( "ab" ) | tag!( "ef" ) ) );
/// ```
///
/// in that case, if you order by size, passing `"abcd"` as input will always be matched by the
/// smallest parser, so the solution using `complete!` is better suited.
///
/// You can also nest multiple `alt!`, like this:
///
/// ```ignore
///  named!( test,
///    alt!(
///      preceded!(
///        tag!("ab"),
///        alt!(
///          tag!( "cd" ) |
///          eof!()
///        )
///      )
///    | tag!( "ef" )
///    )
///  );
/// ```
///
///  `preceded!` will first parse `"ab"` then, if successful, try the alternatives "cd",
///  or empty input (End Of File). If none of them work, `preceded!` will fail and
///  "ef" will be tested.
///
#[macro_export]
macro_rules! alt (
  (__impl $i:expr, $submac:ident!( $($args:tt)* ), $($rest:tt)* ) => (
    compiler_error!("alt uses '|' as separator, not ',':

      alt!(
        tag!(\"abcd\") |
        tag!(\"efgh\") |
        tag!(\"ijkl\")
      )
    ");
  );
  (__impl $i:expr, $e:ident, $($rest:tt)* ) => (
    alt!(__impl $i, call!($e) , $($rest)*);
  );
  (__impl $i:expr, $e:ident | $($rest:tt)*) => (
    alt!(__impl $i, call!($e) | $($rest)*);
  );

  (__impl $i:expr, $subrule:ident!( $($args:tt)*) | $($rest:tt)*) => (
    {
      let i_ = $i.clone();
      let res = $subrule!(i_, $($args)*);
      match res {
        $crate::IResult::Done(_,_)     => res,
        $crate::IResult::Incomplete(_) => res,
        $crate::IResult::Error(e)      => {
          let out = alt!(__impl $i, $($rest)*);

          // Compile-time hack to ensure that res's E type is not under-specified.
          // This all has no effect at runtime.
          fn unify_types<T>(_: &T, _: &T) {}
          if let $crate::IResult::Error(ref e2) = out {
            unify_types(&e, e2);
          }

          out
        }
      }
    }
  );

  (__impl $i:expr, $subrule:ident!( $($args:tt)* ) => { $gen:expr } | $($rest:tt)*) => (
    {
      let i_ = $i.clone();
      match $subrule!(i_, $($args)* ) {
        $crate::IResult::Done(i,o)     => $crate::IResult::Done(i,$gen(o)),
        $crate::IResult::Incomplete(x) => $crate::IResult::Incomplete(x),
        $crate::IResult::Error(e)      => {
          let out = alt!(__impl $i, $($rest)*);

          // Compile-time hack to ensure that res's E type is not under-specified.
          // This all has no effect at runtime.
          fn unify_types<T>(_: &T, _: &T) {}
          if let $crate::IResult::Error(ref e2) = out {
            unify_types(&e, e2);
          }

          out
        }
      }
    }
  );

  (__impl $i:expr, $e:ident => { $gen:expr } | $($rest:tt)*) => (
    alt!(__impl $i, call!($e) => { $gen } | $($rest)*);
  );

  (__impl $i:expr, __end) => (
    $crate::IResult::Error(error_position!($crate::ErrorKind::Alt,$i))
  );

  ($i:expr, $($rest:tt)*) => (
    {
      alt!(__impl $i, $($rest)* | __end)
    }
  );
);

/// Is equivalent to the `alt!` combinator, except that it will not return `Incomplete`
/// when one of the constituting parsers returns `Incomplete`. Instead, it will try the
/// next alternative in the chain.
///
/// You should use this combinator only if you know you
/// will not receive partial input for the rules you're trying to match (this
/// is almost always the case for parsing programming languages).
///
/// ```rust,ignore
/// alt_complete!(I -> IResult<I,O> | I -> IResult<I,O> | ... | I -> IResult<I,O> ) => I -> IResult<I, O>
/// ```
/// All the parsers must have the same return type.
///
/// If one of the parsers return `Incomplete`, `alt_complete!` will try the next alternative.
/// If there is no other parser left to try, an `Error` will be returned.
///
/// ```rust,ignore
/// alt_complete!(parser_1 | parser_2 | ... | parser_n)
/// ```
/// **For more in depth examples, refer to the documentation of `alt!`**
#[macro_export]
macro_rules! alt_complete (
  // Recursive rules (must include `complete!` around the head)

  ($i:expr, $e:ident | $($rest:tt)*) => (
    alt_complete!($i, complete!(call!($e)) | $($rest)*);
  );

  ($i:expr, $subrule:ident!( $($args:tt)*) | $($rest:tt)*) => (
    {
      let i_ = $i.clone();
      let res = complete!(i_, $subrule!($($args)*));
      match res {
        $crate::IResult::Done(_,_) => res,
        e => {
          let out = alt_complete!($i, $($rest)*);

          if let (&$crate::IResult::Error(ref e1), &$crate::IResult::Error(ref e2)) = (&e, &out) {
            // Compile-time hack to ensure that res's E type is not under-specified.
            // This all has no effect at runtime.
            fn unify_types<T>(_: &T, _: &T) {}
            unify_types(e1, e2);
          }

          out
        },
      }
    }
  );

  ($i:expr, $subrule:ident!( $($args:tt)* ) => { $gen:expr } | $($rest:tt)+) => (
    {
      let i_ = $i.clone();
      match complete!(i_, $subrule!($($args)*)) {
        $crate::IResult::Done(i,o) => $crate::IResult::Done(i,$gen(o)),
        e => {
          let out = alt_complete!($i, $($rest)*);

          if let (&$crate::IResult::Error(ref e1), &$crate::IResult::Error(ref e2)) = (&e, &out) {
            // Compile-time hack to ensure that res's E type is not under-specified.
            // This all has no effect at runtime.
            fn unify_types<T>(_: &T, _: &T) {}
            unify_types(e1, e2);
          }

          out
        },
      }
    }
  );

  ($i:expr, $e:ident => { $gen:expr } | $($rest:tt)*) => (
    alt_complete!($i, complete!(call!($e)) => { $gen } | $($rest)*);
  );

  // Tail (non-recursive) rules

  ($i:expr, $e:ident => { $gen:expr }) => (
    alt_complete!($i, call!($e) => { $gen });
  );

  ($i:expr, $subrule:ident!( $($args:tt)* ) => { $gen:expr }) => (
    alt!(__impl $i, $subrule!($($args)*) => { $gen } | __end)
  );

  ($i:expr, $e:ident) => (
    alt_complete!($i, call!($e));
  );

  ($i:expr, $subrule:ident!( $($args:tt)*)) => (
    alt!(__impl $i, $subrule!($($args)*) | __end)
  );
);

/// `switch!(I -> IResult<I,P>, P => I -> IResult<I,O> | ... | P => I -> IResult<I,O> ) => I -> IResult<I, O>`
/// choose the next parser depending on the result of the first one, if successful,
/// and returns the result of the second parser
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::IResult::{Done,Error};
/// # #[cfg(feature = "verbose-errors")]
/// # use nom::Err::{Position, NodePosition};
/// # use nom::ErrorKind;
/// # fn main() {
///  named!(sw,
///    switch!(take!(4),
///      b"abcd" => tag!("XYZ") |
///      b"efgh" => tag!("123")
///    )
///  );
///
///  let a = b"abcdXYZ123";
///  let b = b"abcdef";
///  let c = b"efgh123";
///  let d = b"blah";
///
///  assert_eq!(sw(&a[..]), Done(&b"123"[..], &b"XYZ"[..]));
///  assert_eq!(sw(&b[..]), Error(error_node_position!(ErrorKind::Switch, &b"abcdef"[..],
///    error_position!(ErrorKind::Tag, &b"ef"[..]))));
///  assert_eq!(sw(&c[..]), Done(&b""[..], &b"123"[..]));
///  assert_eq!(sw(&d[..]), Error(error_position!(ErrorKind::Switch, &b"blah"[..])));
///  # }
/// ```
///
/// You can specify a default case like with a normal match, using `_`
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::IResult::Done;
/// # fn main() {
///  named!(sw,
///    switch!(take!(4),
///      b"abcd" => tag!("XYZ") |
///      _       => value!(&b"default"[..])
///    )
///  );
///
///  let a = b"abcdXYZ123";
///  let b = b"blah";
///
///  assert_eq!(sw(&a[..]), Done(&b"123"[..], &b"XYZ"[..]));
///  assert_eq!(sw(&b[..]), Done(&b""[..], &b"default"[..]));
///  # }
/// ```
///
/// Due to limitations in Rust macros, it is not possible to have simple functions on the right hand
/// side of pattern, like this:
///
/// ```ignore
///  named!(sw,
///    switch!(take!(4),
///      b"abcd" => tag!("XYZ") |
///      b"efgh" => tag!("123")
///    )
///  );
/// ```
///
/// If you want to pass your own functions instead, you can use the `call!` combinator as follows:
///
/// ```ignore
///  named!(xyz, tag!("XYZ"));
///  named!(num, tag!("123"));
///  named!(sw,
///    switch!(take!(4),
///      b"abcd" => call!(xyz) |
///      b"efgh" => call!(num)
///    )
///  );
/// ```
///
#[macro_export]
macro_rules! switch (
  (__impl $i:expr, $submac:ident!( $($args:tt)* ), $($p:pat => $subrule:ident!( $($args2:tt)* ))|* ) => (
    {
      let i_ = $i.clone();
      match map!(i_, $submac!($($args)*), |o| Some(o)) {
        $crate::IResult::Error(e)      => $crate::IResult::Error(error_node_position!(
            $crate::ErrorKind::Switch, $i, e
        )),
        $crate::IResult::Incomplete(i) => $crate::IResult::Incomplete(i),
        $crate::IResult::Done(i, o)    => {
          match o {
            $(Some($p) => match $subrule!(i, $($args2)*) {
              $crate::IResult::Error(e) => $crate::IResult::Error(error_node_position!(
                  $crate::ErrorKind::Switch, $i, e
              )),
              a => a,
            }),*,
            _    => $crate::IResult::Error(error_position!($crate::ErrorKind::Switch,$i))
          }
        }
      }
    }
  );
  ($i:expr, $submac:ident!( $($args:tt)*), $($rest:tt)*) => (
    {
      switch!(__impl $i, $submac!($($args)*), $($rest)*)
    }
  );
  ($i:expr, $e:ident, $($rest:tt)*) => (
    {
      switch!(__impl $i, call!($e), $($rest)*)
    }
  );
);

///
///
/// `permutation!(I -> IResult<I,A>, I -> IResult<I,B>, ... I -> IResult<I,X> ) => I -> IResult<I, (A,B,...X)>`
/// applies its sub parsers in a sequence, but independent from their order
/// this parser will only succeed if all of its sub parsers succeed
///
/// the tuple of results is in the same order as the parsers are declared
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::IResult::{Done,Error,Incomplete};
/// # use nom::{ErrorKind,Needed};
/// # fn main() {
/// named!(perm<(&[u8], &[u8], &[u8])>,
///   permutation!(tag!("abcd"), tag!("efg"), tag!("hi"))
/// );
///
/// // whatever the order, if the parser succeeds, each
/// // tag should have matched correctly
/// let expected = (&b"abcd"[..], &b"efg"[..], &b"hi"[..]);
///
/// let a = &b"abcdefghijk"[..];
/// assert_eq!(perm(a), Done(&b"jk"[..], expected));
/// let b = &b"efgabcdhijkl"[..];
/// assert_eq!(perm(b), Done(&b"jkl"[..], expected));
/// let c = &b"hiefgabcdjklm"[..];
/// assert_eq!(perm(c), Done(&b"jklm"[..], expected));
///
/// let d = &b"efgxyzabcdefghi"[..];
/// assert_eq!(perm(d), Error(error_position!(ErrorKind::Permutation, &b"xyzabcdefghi"[..])));
///
/// let e = &b"efgabc"[..];
/// assert_eq!(perm(e), Incomplete(Needed::Size(7)));
/// # }
/// ```
#[macro_export]
macro_rules! permutation (
  ($i:expr, $($rest:tt)*) => (
    {
      let mut res    = permutation_init!((), $($rest)*);
      let mut input  = $i;
      let mut error  = ::std::option::Option::None;
      let mut needed = ::std::option::Option::None;

      loop {
        let mut all_done = true;
        permutation_iterator!(0, input, all_done, needed, res, $($rest)*);

        //if we reach that part, it means none of the parsers were able to read anything
        if !all_done {
          //FIXME: should wrap the error returned by the child parser
          error = ::std::option::Option::Some(error_position!($crate::ErrorKind::Permutation, input));
        }
        break;
      }

      if let ::std::option::Option::Some(need) = needed {
        if let $crate::Needed::Size(sz) = need {
          $crate::IResult::Incomplete(
            $crate::Needed::Size(
              $crate::InputLength::input_len(&($i))  -
              $crate::InputLength::input_len(&input) +
              sz
            )
          )
        } else {
          $crate::IResult::Incomplete($crate::Needed::Unknown)
        }
      } else if let ::std::option::Option::Some(e) = error {
        $crate::IResult::Error(e)
      } else {
        let unwrapped_res = permutation_unwrap!(0, (), res, $($rest)*);
        $crate::IResult::Done(input, unwrapped_res)
      }
    }
  );
);


#[doc(hidden)]
#[macro_export]
macro_rules! permutation_init (
  ((), $e:ident, $($rest:tt)*) => (
    permutation_init!((::std::option::Option::None), $($rest)*)
  );
  ((), $submac:ident!( $($args:tt)* ), $($rest:tt)*) => (
    permutation_init!((::std::option::Option::None), $($rest)*)
  );
  (($($parsed:expr),*), $e:ident, $($rest:tt)*) => (
    permutation_init!(($($parsed),* , ::std::option::Option::None), $($rest)*);
  );
  (($($parsed:expr),*), $submac:ident!( $($args:tt)* ), $($rest:tt)*) => (
    permutation_init!(($($parsed),* , ::std::option::Option::None), $($rest)*);
  );
  (($($parsed:expr),*), $e:ident) => (
    ($($parsed),* , ::std::option::Option::None)
  );
  (($($parsed:expr),*), $submac:ident!( $($args:tt)* )) => (
    ($($parsed),* , ::std::option::Option::None)
  );
  (($($parsed:expr),*),) => (
    ($($parsed),*)
  );
);

#[doc(hidden)]
#[macro_export]
macro_rules! succ (
  (0, $submac:ident ! ($($rest:tt)*)) => ($submac!(1, $($rest)*));
  (1, $submac:ident ! ($($rest:tt)*)) => ($submac!(2, $($rest)*));
  (2, $submac:ident ! ($($rest:tt)*)) => ($submac!(3, $($rest)*));
  (3, $submac:ident ! ($($rest:tt)*)) => ($submac!(4, $($rest)*));
  (4, $submac:ident ! ($($rest:tt)*)) => ($submac!(5, $($rest)*));
  (5, $submac:ident ! ($($rest:tt)*)) => ($submac!(6, $($rest)*));
  (6, $submac:ident ! ($($rest:tt)*)) => ($submac!(7, $($rest)*));
  (7, $submac:ident ! ($($rest:tt)*)) => ($submac!(8, $($rest)*));
  (8, $submac:ident ! ($($rest:tt)*)) => ($submac!(9, $($rest)*));
  (9, $submac:ident ! ($($rest:tt)*)) => ($submac!(10, $($rest)*));
  (10, $submac:ident ! ($($rest:tt)*)) => ($submac!(11, $($rest)*));
  (11, $submac:ident ! ($($rest:tt)*)) => ($submac!(12, $($rest)*));
  (12, $submac:ident ! ($($rest:tt)*)) => ($submac!(13, $($rest)*));
  (13, $submac:ident ! ($($rest:tt)*)) => ($submac!(14, $($rest)*));
  (14, $submac:ident ! ($($rest:tt)*)) => ($submac!(15, $($rest)*));
  (15, $submac:ident ! ($($rest:tt)*)) => ($submac!(16, $($rest)*));
  (16, $submac:ident ! ($($rest:tt)*)) => ($submac!(17, $($rest)*));
  (17, $submac:ident ! ($($rest:tt)*)) => ($submac!(18, $($rest)*));
  (18, $submac:ident ! ($($rest:tt)*)) => ($submac!(19, $($rest)*));
  (19, $submac:ident ! ($($rest:tt)*)) => ($submac!(20, $($rest)*));
);

// HACK: for some reason, Rust 1.11 does not accept $res.$it in
// permutation_unwrap. This is a bit ugly, but it will have no
// impact on the generated code
#[doc(hidden)]
#[macro_export]
macro_rules! acc (
  (0, $tup:expr) => ($tup.0);
  (1, $tup:expr) => ($tup.1);
  (2, $tup:expr) => ($tup.2);
  (3, $tup:expr) => ($tup.3);
  (4, $tup:expr) => ($tup.4);
  (5, $tup:expr) => ($tup.5);
  (6, $tup:expr) => ($tup.6);
  (7, $tup:expr) => ($tup.7);
  (8, $tup:expr) => ($tup.8);
  (9, $tup:expr) => ($tup.9);
  (10, $tup:expr) => ($tup.10);
  (11, $tup:expr) => ($tup.11);
  (12, $tup:expr) => ($tup.12);
  (13, $tup:expr) => ($tup.13);
  (14, $tup:expr) => ($tup.14);
  (15, $tup:expr) => ($tup.15);
  (16, $tup:expr) => ($tup.16);
  (17, $tup:expr) => ($tup.17);
  (18, $tup:expr) => ($tup.18);
  (19, $tup:expr) => ($tup.19);
  (20, $tup:expr) => ($tup.20);
);

#[doc(hidden)]
#[macro_export]
macro_rules! permutation_unwrap (
  ($it:tt,  (), $res:ident, $submac:ident!( $($args:tt)* ), $($rest:tt)*) => (
    succ!($it, permutation_unwrap!((acc!($it, $res).unwrap()), $res, $($rest)*));
  );
  ($it:tt, ($($parsed:expr),*), $res:ident, $e:ident, $($rest:tt)*) => (
    succ!($it, permutation_unwrap!(($($parsed),* , acc!($it, $res).unwrap()), $res, $($rest)*));
  );
  ($it:tt, ($($parsed:expr),*), $res:ident, $submac:ident!( $($args:tt)* ), $($rest:tt)*) => (
    succ!($it, permutation_unwrap!(($($parsed),* , acc!($it, $res).unwrap()), $res, $($rest)*));
  );
  ($it:tt, ($($parsed:expr),*), $res:ident, $e:ident) => (
    ($($parsed),* , { acc!($it, $res).unwrap() })
  );
  ($it:tt, ($($parsed:expr),*), $res:ident, $submac:ident!( $($args:tt)* )) => (
    ($($parsed),* , acc!($it, $res).unwrap() )
  );
);

#[doc(hidden)]
#[macro_export]
macro_rules! permutation_iterator (
  ($it:tt,$i:expr, $all_done:expr, $needed:expr, $res:expr, $e:ident, $($rest:tt)*) => (
    permutation_iterator!($it, $i, $all_done, $needed, $res, call!($e), $($rest)*);
  );
  ($it:tt, $i:expr, $all_done:expr, $needed:expr, $res:expr, $submac:ident!( $($args:tt)* ), $($rest:tt)*) => {
    if acc!($it, $res) == ::std::option::Option::None {
      match $submac!($i, $($args)*) {
        $crate::IResult::Done(i,o)     => {
          $i = i;
          acc!($it, $res) = ::std::option::Option::Some(o);
          continue;
        },
        $crate::IResult::Error(_) => {
          $all_done = false;
        },
        $crate::IResult::Incomplete(i) => {
          $needed = ::std::option::Option::Some(i);
          break;
        }
      };
    }
    succ!($it, permutation_iterator!($i, $all_done, $needed, $res, $($rest)*));
  };
  ($it:tt,$i:expr, $all_done:expr, $needed:expr, $res:expr, $e:ident) => (
    permutation_iterator!($it, $i, $all_done, $res, call!($e));
  );
  ($it:tt, $i:expr, $all_done:expr, $needed:expr, $res:expr, $submac:ident!( $($args:tt)* )) => {
    if acc!($it, $res) == ::std::option::Option::None {
      match $submac!($i, $($args)*) {
        $crate::IResult::Done(i,o)     => {
          $i = i;
          acc!($it, $res) = ::std::option::Option::Some(o);
          continue;
        },
        $crate::IResult::Error(_) => {
          $all_done = false;
        },
        $crate::IResult::Incomplete(i) => {
          $needed = ::std::option::Option::Some(i);
          break;
        }
      };
    }
  };
);

#[cfg(test)]
mod tests {
  use internal::{Needed,IResult};
  use internal::IResult::*;
  use util::ErrorKind;

  // reproduce the tag and take macros, because of module import order
  macro_rules! tag (
    ($i:expr, $inp: expr) => (
      {
        #[inline(always)]
        fn as_bytes<T: $crate::AsBytes>(b: &T) -> &[u8] {
          b.as_bytes()
        }

        let expected = $inp;
        let bytes    = as_bytes(&expected);

        tag_bytes!($i,bytes)
      }
    );
  );

  macro_rules! tag_bytes (
    ($i:expr, $bytes: expr) => (
      {
        use std::cmp::min;
        let len = $i.len();
        let blen = $bytes.len();
        let m   = min(len, blen);
        let reduced = &$i[..m];
        let b       = &$bytes[..m];

        let res: $crate::IResult<_,_> = if reduced != b {
          $crate::IResult::Error(error_position!($crate::ErrorKind::Tag, $i))
        } else if m < blen {
          $crate::IResult::Incomplete($crate::Needed::Size(blen))
        } else {
          $crate::IResult::Done(&$i[blen..], reduced)
        };
        res
      }
    );
  );

  macro_rules! take(
    ($i:expr, $count:expr) => (
      {
        let cnt = $count as usize;
        let res:$crate::IResult<&[u8],&[u8]> = if $i.len() < cnt {
          $crate::IResult::Incomplete($crate::Needed::Size(cnt))
        } else {
          $crate::IResult::Done(&$i[cnt..],&$i[0..cnt])
        };
        res
      }
    );
  );

#[test]
  fn alt() {
    fn work(input: &[u8]) -> IResult<&[u8],&[u8], &'static str> {
      Done(&b""[..], input)
    }

    #[allow(unused_variables)]
    fn dont_work(input: &[u8]) -> IResult<&[u8],&[u8],&'static str> {
      Error(error_code!(ErrorKind::Custom("abcd")))
    }

    fn work2(input: &[u8]) -> IResult<&[u8],&[u8], &'static str> {
      Done(input, &b""[..])
    }

    fn alt1(i:&[u8]) ->  IResult<&[u8],&[u8], &'static str> {
      alt!(i, dont_work | dont_work)
    }
    fn alt2(i:&[u8]) ->  IResult<&[u8],&[u8], &'static str> {
      alt!(i, dont_work | work)
    }
    fn alt3(i:&[u8]) ->  IResult<&[u8],&[u8], &'static str> {
      alt!(i, dont_work | dont_work | work2 | dont_work)
    }
    //named!(alt1, alt!(dont_work | dont_work));
    //named!(alt2, alt!(dont_work | work));
    //named!(alt3, alt!(dont_work | dont_work | work2 | dont_work));

    let a = &b"abcd"[..];
    assert_eq!(alt1(a), Error(error_position!(ErrorKind::Alt, a)));
    assert_eq!(alt2(a), Done(&b""[..], a));
    assert_eq!(alt3(a), Done(a, &b""[..]));

    named!(alt4, alt!(tag!("abcd") | tag!("efgh")));
    let b = &b"efgh"[..];
    assert_eq!(alt4(a), Done(&b""[..], a));
    assert_eq!(alt4(b), Done(&b""[..], b));

    // test the alternative syntax
    named!(alt5<bool>, alt!(tag!("abcd") => { |_| false } | tag!("efgh") => { |_| true }));
    assert_eq!(alt5(a), Done(&b""[..], false));
    assert_eq!(alt5(b), Done(&b""[..], true));

    // compile-time test guarding against an underspecified E generic type (#474)
    named!(alt_eof1, alt!(eof!() | eof!()));
    named!(alt_eof2, alt!(eof!() => {|x| x} | eof!() => {|x| x}));
    let _ = (alt_eof1, alt_eof2);

  }

  #[test]
  fn alt_incomplete() {
    named!(alt1, alt!(tag!("a") | tag!("bc") | tag!("def")));

    let a = &b""[..];
    assert_eq!(alt1(a), Incomplete(Needed::Size(1)));
    let a = &b"b"[..];
    assert_eq!(alt1(a), Incomplete(Needed::Size(2)));
    let a = &b"bcd"[..];
    assert_eq!(alt1(a), Done(&b"d"[..], &b"bc"[..]));
    let a = &b"cde"[..];
    assert_eq!(alt1(a), Error(error_position!(ErrorKind::Alt, a)));
    let a = &b"de"[..];
    assert_eq!(alt1(a), Incomplete(Needed::Size(3)));
    let a = &b"defg"[..];
    assert_eq!(alt1(a), Done(&b"g"[..], &b"def"[..]));
  }

  #[test]
  fn alt_complete() {
    named!(ac<&[u8], &[u8]>,
      alt_complete!(tag!("abcd") | tag!("ef") | tag!("ghi") | tag!("kl"))
    );

    let a = &b""[..];
    assert_eq!(ac(a), Incomplete(Needed::Size(2)));
    let a = &b"ef"[..];
    assert_eq!(ac(a), Done(&b""[..], &b"ef"[..]));
    let a = &b"cde"[..];
    assert_eq!(ac(a), Error(error_position!(ErrorKind::Alt, a)));
  }

  #[allow(unused_variables)]
  #[test]
  fn switch() {
    named!(sw,
      switch!(take!(4),
        b"abcd" => take!(2) |
        b"efgh" => take!(4)
      )
    );

    let a = &b"abcdefgh"[..];
    assert_eq!(sw(a), Done(&b"gh"[..], &b"ef"[..]));

    let b = &b"efghijkl"[..];
    assert_eq!(sw(b), Done(&b""[..], &b"ijkl"[..]));
    let c = &b"afghijkl"[..];
    assert_eq!(sw(c), Error(error_position!(ErrorKind::Switch, &b"afghijkl"[..])));
  }

  #[test]
  fn permutation() {
    //trace_macros!(true);
    named!(perm<(&[u8], &[u8], &[u8])>,
      permutation!(tag!("abcd"), tag!("efg"), tag!("hi"))
    );
    //trace_macros!(false);

    let expected = (&b"abcd"[..], &b"efg"[..], &b"hi"[..]);

    let a = &b"abcdefghijk"[..];
    assert_eq!(perm(a), Done(&b"jk"[..], expected));
    let b = &b"efgabcdhijk"[..];
    assert_eq!(perm(b), Done(&b"jk"[..], expected));
    let c = &b"hiefgabcdjk"[..];
    assert_eq!(perm(c), Done(&b"jk"[..], expected));

    let d = &b"efgxyzabcdefghi"[..];
    assert_eq!(perm(d), Error(error_position!(ErrorKind::Permutation, &b"xyzabcdefghi"[..])));

    let e = &b"efgabc"[..];
    assert_eq!(perm(e), Incomplete(Needed::Size(7)));
  }

  /*
  named!(does_not_compile,
    alt!(tag!("abcd"), tag!("efgh"))
  );
  */
}