1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//! Bit level parsers and combinators
//!
//! Bit parsing is handled by tweaking the input in most macros.
//! In byte level parsing, the input is generally a `&[u8]` passed from combinator
//! to combinator until the slices are manipulated.
//!
//! Bit parsers take a `(&[u8], usize)` as input. The first part of the tuple is an byte slice,
//! the second part is a bit offset in the first byte of the slice.
//!
//! By passing a pair like this, we can leverage most of the combinators, and avoid
//! transforming the whole slice to a vector of booleans. This should make it easy
//! to see a byte slice as a bit stream, and parse code points of arbitrary bit length.


/// `bits!( parser ) => ( &[u8], (&[u8], usize) -> IResult<(&[u8], usize), T> ) -> IResult<&[u8], T>`
/// transforms its byte slice input into a bit stream for the underlying parsers
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::IResult::Done;
/// # fn main() {
///  named!( take_3_bits<u8>, bits!( take_bits!( u8, 3 ) ) );
///
///  let input = vec![0b10101010, 0b11110000, 0b00110011];
///  let sl    = &input[..];
///
///  assert_eq!(take_3_bits( sl ), Done(&sl[1..], 5) );
/// # }
#[macro_export]
macro_rules! bits (
  ($i:expr, $submac:ident!( $($args:tt)* )) => (
    bits_impl!($i, $submac!($($args)*));
  );
  ($i:expr, $f:expr) => (
    bits_impl!($i, call!($f));
  );
);

#[cfg(feature = "verbose-errors")]
/// Internal parser, do not use directly
#[doc(hidden)]
#[macro_export]
macro_rules! bits_impl (
  ($i:expr, $submac:ident!( $($args:tt)* )) => (
    {
      let input = ($i, 0usize);
      match $submac!(input, $($args)*) {
        $crate::IResult::Error(e)                            => {
          let err = match e {
            $crate::Err::Code(k) | $crate::Err::Node(k, _) => $crate::Err::Code(k),
            $crate::Err::Position(k, (i,b)) | $crate::Err::NodePosition(k, (i,b), _) => {
              $crate::Err::Position(k, &i[b/8..])
            }
          };
          $crate::IResult::Error(err)
        }
        $crate::IResult::Incomplete($crate::Needed::Unknown) => $crate::IResult::Incomplete($crate::Needed::Unknown),
        $crate::IResult::Incomplete($crate::Needed::Size(i)) => {
          //println!("bits parser returned Needed::Size({})", i);
          $crate::IResult::Incomplete($crate::Needed::Size(i / 8 + 1))
        },
        $crate::IResult::Done((i, bit_index), o)             => {
          let byte_index = bit_index / 8 + if bit_index % 8 == 0 { 0 } else { 1 } ;
          //println!("bit index=={} => byte index=={}", bit_index, byte_index);
          $crate::IResult::Done(&i[byte_index..], o)
        }
      }
    }
  );
);

#[cfg(not(feature = "verbose-errors"))]
/// Internal parser, do not use directly
#[doc(hidden)]
#[macro_export]
macro_rules! bits_impl (
  ($i:expr, $submac:ident!( $($args:tt)* )) => (
    {
      let input = ($i, 0usize);
      match $submac!(input, $($args)*) {
        $crate::IResult::Error(e)                            => {
          $crate::IResult::Error(e)
        }
        $crate::IResult::Incomplete($crate::Needed::Unknown) => $crate::IResult::Incomplete($crate::Needed::Unknown),
        $crate::IResult::Incomplete($crate::Needed::Size(i)) => {
          //println!("bits parser returned Needed::Size({})", i);
          $crate::IResult::Incomplete($crate::Needed::Size(i / 8 + 1))
        },
        $crate::IResult::Done((i, bit_index), o)             => {
          let byte_index = bit_index / 8 + if bit_index % 8 == 0 { 0 } else { 1 } ;
          //println!("bit index=={} => byte index=={}", bit_index, byte_index);
          $crate::IResult::Done(&i[byte_index..], o)
        }
      }
    }
  );
);

/// `take_bits!(type, nb) => ( (&[T], usize), U, usize) -> IResult<(&[T], usize), U>`
/// generates a parser consuming the specified number of bits.
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::IResult::Done;
/// # fn main() {
///  named!( take_pair<(u8, u8)>, bits!( pair!( take_bits!( u8, 3 ), take_bits!(u8, 5) ) ) );
///
///  let input = vec![0b10101010, 0b11110000, 0b00110011];
///  let sl    = &input[..];
///
///  assert_eq!(take_pair( sl ),       Done(&sl[1..], (5, 10)) );
///  assert_eq!(take_pair( &sl[1..] ), Done(&sl[2..], (7, 16)) );
/// # }
/// ```
#[macro_export]
macro_rules! take_bits (
  ($i:expr, $t:ty, $count:expr) => (
    {
      use std::ops::Div;
      use std::convert::Into;
      //println!("taking {} bits from {:?}", $count, $i);
      let (input, bit_offset) = $i;
      let res : $crate::IResult<(&[u8],usize), $t> = if $count == 0 {
        $crate::IResult::Done( (input, bit_offset), (0 as u8).into())
      } else {
        let cnt = ($count as usize + bit_offset).div(8);
        if input.len() * 8 < $count as usize + bit_offset {
          //println!("returning incomplete: {}", $count as usize + bit_offset);
          $crate::IResult::Incomplete($crate::Needed::Size($count as usize))
        } else {
          let mut acc:$t            = (0 as u8).into();
          let mut offset: usize     = bit_offset;
          let mut remaining: usize  = $count;
          let mut end_offset: usize = 0;

          for byte in input.iter().take(cnt + 1) {
            if remaining == 0 {
              break;
            }
            let val: $t = if offset == 0 {
              (*byte as u8).into()
            } else {
              (((*byte as u8) << offset) as u8 >> offset).into()
            };

            if remaining < 8 - offset {
              acc += val >> (8 - offset - remaining);
              end_offset = remaining + offset;
              break;
            } else {
              acc += val << (remaining - (8 - offset));
              remaining -= 8 - offset;
              offset = 0;
            }
          }
          $crate::IResult::Done( (&input[cnt..], end_offset) , acc)
        }
      };
      res
    }
  );
);

/// matches an integer pattern to a bitstream. The number of bits of the input to compare must be specified
#[macro_export]
macro_rules! tag_bits (
  ($i:expr, $t:ty, $count:expr, $p: pat) => (
    {
      match take_bits!($i, $t, $count) {
        $crate::IResult::Incomplete(i) => $crate::IResult::Incomplete(i),
        $crate::IResult::Done(i, o)    => {
          if let $p = o {
            let res: $crate::IResult<(&[u8],usize),$t> = $crate::IResult::Done(i, o);
            res
          } else {
            $crate::IResult::Error(error_position!($crate::ErrorKind::TagBits, $i))
          }
        },
        _                              => {
          $crate::IResult::Error(error_position!($crate::ErrorKind::TagBits, $i))
        }
      }
    }
  )
);

#[cfg(test)]
mod tests {
  use std::ops::{Shr,Shl,AddAssign};
  use internal::{IResult,Needed};
  use ErrorKind;

  #[test]
  fn take_bits() {
    let input = [0b10101010, 0b11110000, 0b00110011];
    let sl    = &input[..];

    assert_eq!(take_bits!( (sl, 0), u8,   0 ), IResult::Done((sl, 0), 0));
    assert_eq!(take_bits!( (sl, 0), u8,   8 ), IResult::Done((&sl[1..], 0), 170));
    assert_eq!(take_bits!( (sl, 0), u8,   3 ), IResult::Done((&sl[0..], 3), 5));
    assert_eq!(take_bits!( (sl, 0), u8,   6 ), IResult::Done((&sl[0..], 6), 42));
    assert_eq!(take_bits!( (sl, 1), u8,   1 ), IResult::Done((&sl[0..], 2), 0));
    assert_eq!(take_bits!( (sl, 1), u8,   2 ), IResult::Done((&sl[0..], 3), 1));
    assert_eq!(take_bits!( (sl, 1), u8,   3 ), IResult::Done((&sl[0..], 4), 2));
    assert_eq!(take_bits!( (sl, 6), u8,   3 ), IResult::Done((&sl[1..], 1), 5));
    assert_eq!(take_bits!( (sl, 0), u16, 10 ), IResult::Done((&sl[1..], 2), 683));
    assert_eq!(take_bits!( (sl, 0), u16,  8 ), IResult::Done((&sl[1..], 0), 170));
    assert_eq!(take_bits!( (sl, 6), u16, 10 ), IResult::Done((&sl[2..], 0), 752));
    assert_eq!(take_bits!( (sl, 6), u16, 11 ), IResult::Done((&sl[2..], 1), 1504));
    assert_eq!(take_bits!( (sl, 0), u32, 20 ), IResult::Done((&sl[2..], 4), 700163));
    assert_eq!(take_bits!( (sl, 4), u32, 20 ), IResult::Done((&sl[3..], 0), 716851));
    assert_eq!(take_bits!( (sl, 4), u32, 22 ), IResult::Incomplete(Needed::Size(22)));
  }

  #[test]
  fn tag_bits() {
    let input = [0b10101010, 0b11110000, 0b00110011];
    let sl    = &input[..];

    assert_eq!(tag_bits!( (sl, 0), u8,   3, 0b101), IResult::Done((&sl[0..], 3), 5));
    assert_eq!(tag_bits!( (sl, 0), u8,   4, 0b1010), IResult::Done((&sl[0..], 4), 10));
  }

  named!(ch<(&[u8],usize),(u8,u8)>,
    do_parse!(
      tag_bits!(u8, 3, 0b101) >>
      x: take_bits!(u8, 4)    >>
      y: take_bits!(u8, 5)    >>
      (x,y)
    )
  );

  #[test]
  fn chain_bits() {
    let input = [0b10101010, 0b11110000, 0b00110011];
    let sl    = &input[..];
    assert_eq!(ch((&input[..],0)), IResult::Done((&sl[1..], 4), (5,15)));
    assert_eq!(ch((&input[..],4)), IResult::Done((&sl[2..], 0), (7,16)));
    assert_eq!(ch((&input[..1],0)), IResult::Incomplete(Needed::Size(12)));
  }

  named!(ch_bytes<(u8,u8)>, bits!(ch));
  #[test]
  fn bits_to_bytes() {
    let input = [0b10101010, 0b11110000, 0b00110011];
    assert_eq!(ch_bytes(&input[..]), IResult::Done(&input[2..], (5,15)));
    assert_eq!(ch_bytes(&input[..1]), IResult::Incomplete(Needed::Size(2)));
    assert_eq!(ch_bytes(&input[1..]), IResult::Error(error_position!(ErrorKind::TagBits, &input[1..])));
  }

  #[derive(PartialEq,Debug)]
  struct FakeUint(u32);

  impl AddAssign for FakeUint {

      fn add_assign(&mut self, other: FakeUint) {
          *self = FakeUint(&self.0 + other.0);
      }

  }

  impl Shr<usize> for FakeUint {
      type Output = FakeUint;

      fn shr(self, shift: usize) -> FakeUint {
          FakeUint(&self.0 >> shift)
      }

  }

  impl Shl<usize> for FakeUint {
      type Output = FakeUint;

      fn shl(self, shift: usize) -> FakeUint {
          FakeUint(&self.0 << shift)
      }

  }

  impl From<u8> for FakeUint {

      fn from(i: u8) -> FakeUint {
          FakeUint(u32::from(i))
      }
  }

  #[test]
  fn non_privitive_type() {
    let input = [0b10101010, 0b11110000, 0b00110011];
    let sl    = &input[..];

    assert_eq!(take_bits!( (sl, 0), FakeUint, 20 ), IResult::Done((&sl[2..], 4), FakeUint(700163)));
    assert_eq!(take_bits!( (sl, 4), FakeUint, 20 ), IResult::Done((&sl[3..], 0), FakeUint(716851)));
    assert_eq!(take_bits!( (sl, 4), FakeUint, 22 ), IResult::Incomplete(Needed::Size(22)));
  }
}